
Mike Macdonald

SECURING STATIC S3 WEBSITE
WITH OAC AND CREATING A

CI/CD PIPELINE

1

CONTENTS

1. Brief .. 2

2. Origin Access Control (OAC)... 3

2.1 Current Setup .. 3

2.2 Creating OAC.. 5

2.3 Adding OAC to CloudFront Distribution .. 6

2.4 Blocking Public Access ... 8

2.5 Disable Static Website Hosting .. 8

2.6 Adding Index.html as the Default Root Object.. 9

3. Creating a CI/CD pipeline with Github ... 10

3.1 Overview .. 10

3.2 Creating A Github Repository .. 10

3.3 Initialisng Git and Creating Remote Within GitHub Repository .. 11

3.4 Pushing Files to the Repository ... 11

3.5 Making Changes To Index.html ... 14

4. Integration With AWS CodePipeline .. 16

4.1 Overview .. 16

4.2 Connecting GitHub and AWS CodePipeline... 16

4.2.1 Create the Pipeline Settings ... 16

4.2.2 Connect Github... 17

5. Lambda Function That Invalidates CloudFront Cache ... 23

5.1 Creating The Lambda Function.. 23

5.2 Giving Lambda Correct Permissions .. 24

5.3 Testing The Lambda Function.. 24

5.4 Triggering Lambda With S3 Event ... 25

5.5 Updating Lambda Trigger .. 26

5.6 Final Test .. 27

6. Conclusion .. 28

2

1. BRIEF

Part 1 - Previously I have created a static website using S3, a custom domain name (mike-macdonald.co.uk)

and distributed using AWS CloudFront. However, the origin of the CloudFront distribution uses the website

endpoint of the S3 bucket meaning that the S3 bucket needs public access for CloudFront to be able to

distribute the content. Whilst this method works, from a security point of view it is not ideal to have public

access granted (albeit read only) to a bucket if it is not directly required. For security, I am going to change

the set-up of the CloudFront distribution to use Origin Access Control (OAC). This is a secure way for

CloudFront to access S3 origins.

Part 2 – Currently whenever I want to update the website I have to edit the website locally then either

manually upload the updated file or use the CLI. I want to create a CI/CD process using AWS CodePipeline

and GitHub so that changes can be pushed automatically to S3.

Part 3 – CloudFront works by caching data at edge locations. This can mean that it serves out of date

content if the content has been updated but the cache hasn’t refreshed. I have created a lambda function

that creates an invalidation on the CloudFront distribution each time a file called index.html is uploaded to

the S3 bucket. This ensures CloudFront will always be serving the most up to date website.

Final architecture:

3

2. ORIGIN ACCESS CONTROL (OAC)

2.1 CURRENT SETUP

With the current setup Cloudfront uses the public website endpoint of the S3 bucket. This means that

cloudformation is accessing the bucket through the public internet.

Currently the bucket that hosts the website is publically accessible.

Public access is enabled however for security you still need a bucket policy to decide which actions can be

done on the bucket. There is a bucket policy on this bucket just to allow anyone to get any of the objects in

the bucket. This prevents any unauthorised users adding or removing objects from the bucket.

4

Within CloudFront I have a single origin of the website endpoint of the S3 bucket.

5

2.2 CREATING OAC

Origin Access is created under the security heading within CloudFront.

6

2.3 ADDING OAC TO CLOUDFRONT DISTRIBUTION

When original set up, the S3 bucket was created to host a static website. When setting up the origin in

CloudFront you have the choice to use the Website Endpoint instead of the Bucket Endpoint. This makes

the CloudFront distribution see the bucket only as a website and not as a bucket. Using this method, OAC

cannot be set up. There is no option below to set up Origin Access Control.

To rectify the situation it’s required to change the origin domain from the website endpoint and put it back

to the original bucket endpoint. This then does give the option for Origin Access Control.

7

Here we can then choose the OAC that we created previously.

Do notice that using this method you have to change the S3 bucket policy to allow CloudFront permission

to access the S3 bucket. Fortunately, it gives an example policy to use that can be copied into the S3 bucket

policy directly. (Source ARN anonymised for security).

8

2.4 BLOCKING PUBLIC ACCESS

After having changed the bucket policy you can block public access within the permissions of the S3

bucket.

This has now changed the S3 bucket from being publically accessible being more secure.

2.5 DISABLE STATIC WEBSITE HOSTING

Within the properties of the S3 bucket we need to change Static Website Hosting to Disable.

9

2.6 ADDING INDEX.HTML AS THE DEFAULT ROOT OBJECT

When you set up a static website using S3 you have to define which file you want to use as your root object

(home page). When moving over to using OAC this needs doing but in the settings of the CloudFront

distribution rather than within the S3 bucket. My home page is named “index.html” so this is set as the

default root object.

The website is now no longer publically accessible through S3 and is only available through the CloudFront

distribution, adding more security but still providing high-speed delivery.

10

3. CREATING A CI/CD PIPELINE WITH GITHUB

3.1 OVERVIEW

Currently every time I want to update the website, I have to manually go to my S3 bucket, overwrite the

index.html file, and add any other files (eg images) to the various folders. This can also be done more

efficiently via the CLI, utilising the access key and secret access key. However I wanted to expand my CI/CD

skills and so decided to use GitHub in conjunction with AWS CodePipeline.

CI/CD is Continuous Integration/Continuous Deployment. Continuous Integration allows for automated

integration of code changes from multiple developers into one repository. Continuous Deployment

automatically deploys the validated and tested code changes to production environments. Whilst this isn’t

technically CI/CD in its truest form because it’s not triggering builds or running tests, it is deploying code

and using the principals of committing changes, pushing to a repository and having CodePipeline pull from

the remote repository and update the S3 file has strong similarities.

3.2 CREATING A GITHUB REPOSITORY

I am going to use GitHub as a remote repository that I will connect with AWS CodePipeline. The first stage

of this is to create a GitHub repository.

11

3.3 INITIALISNG GIT AND CREATING REMOTE WITHIN GITHUB REPOSITORY

Git is already installed locally and I have already set up SSH keys to allow access to my GitHub account. I

need to initialise git in the folder where my files are stored using the command git init.

Then I rename the default brain to “main” using the command git branch –M main (this has no output)

To add a remote within the GitHub repository I use the command git remote add origin

git@github.com:mkmacd/mikemacwebsite (This also has no output)

3.4 PUSHING FILES TO THE REPOSITORY

Using the command git status you can see the files and folders that aren’t currently being tracked

 Using the command git add . (including the period) will add all of these files to the tracked list.

Running git status again shows the tracked files.

12

Next we need to commit these files using git commit -m “First Commit”. This includes a comment for the

commit “First Commit” – These comments are use to describe changes.

13

Now this needs pushing to the remote repository on GitHub. This is done with the command git push –u

origin main (Note: This command with –u origin main only needs doing once, from this point on just git

push can be used. –u origin main sets up a tracking relationship between the local main branch with the

remote origin/main branch in the remote repository.)

This can be seen within the remote repository on GitHub

14

3.5 MAKING CHANGES TO INDEX.HTML

If I now make changes to index.html file by removing these two unnecessary blank lines:

To become:

Then save the changes and run the command git status again this shows there has been a modification to

index.html:

It is possible to view the modification that have been made using git diff ./index.html

This shows the lines that have been removed.

This change hasn’t yet been staged, but can be with git add ./index.html (This has no output)

This can then be committed with git commit –m “Removed unnecessary lines”

15

And finally this commit can be pushed to the remote repository again using git push

You can see that in the remote repository that index.html has a more recent commit.

16

4. INTEGRATION WITH AWS CODEPIPELINE

4.1 OVERVIEW

AWS CodePipeline can be configured to pull source code from GitHub (or other online repositories). To

automate pipeline executions, webhooks from the GitHub repository can be used which notify

CodePipeline when new changes have been pushed to the repository. When these are triggered

CodePipeline pulls the changes and passes them to subsequent stages in the pipeline (such as building,

testing and deployment).

4.2 CONNECTING GITHUB AND AWS CODEPIPELINE

4.2.1 CREATE THE PIPELINE SETTINGS

17

4.2.2 CONNECT GITHUB

18

19

At this stage you have to install a new app (assuming you haven’t already done this. I’ve chosen to only

allow the single website repository.

20

We can then skip the build stage as this isn’t relevant to this project.

21

It’s here we chose to deploy to a specific S3 bucket.

The finally we can create the pipeline.

22

AWS then confirms that this has worked

CodePipeline is now pulling any changes from GitHub and deploying them to the bucket that the website is

hosted in. Looking at the S3 bucket you can see all the files have been updated at the same time. This is

because CodePipeline deploys the entire repository rather than just individual changed files.

23

5. LAMBDA FUNCTION THAT INVALIDATES CLOUDFRONT CACHE

As CloudFront caches content at edge locations for faster delivery, if the cache isn’t updated then this can

lead to out of date content. By default CloudFront caches content from S3 every 24 hours. However it is

possible to manually invalidate a CloudFront distribution to force it to cache a new response.

As I want the website to be as up to date as possible I created a Lambda function which will be triggered

every time a file is uploaded to the website S3 bucket (which will happen via CloudPipeline every time new

files are pushed to GitHub).

5.1 CREATING THE LAMBDA FUNCTION

 The Lambda functions receives the event from the S3 bucket when new objects are uploaded. It then

cycles through the names of the objects and if there is an object called “index.html” then it creates an

invalidation on the CloudFront distribution.

import json

import boto3

s3_client = boto3.client('s3')

cloudfront_client = boto3.client('cloudfront')

def lambda_handler(event, context):

 for record in event['Records']:

 if record['s3']['object']['key'] == "index.html":

 invalidation = cloudfront_client.create_invalidation(

 DistributionId = "E204AHJ2Q4OTIR",

 InvalidationBatch ={

 'Paths': {

 "Quantity": 1,

 "Items": ["/*"]

 },

 "CallerReference": str(record['eventTime'])

 }

)

 return {

 'statusCode': 200,

 'body': json.dumps("Cloudfront invalidation successfully created")

 }

 return{

 'statusCode': 204,

 'body': json.dumps("No file called index.html therefore no invalidation

created")

 }

24

5.2 GIVING LAMBDA CORRECT PERMISSIONS

Lambda needs permissions to be able to create the invalidation so I created an inline policy and attached it

to the basic Lambda execution role.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "Allow Distribution Invalidation",

 "Effect": "Allow",

 "Action": "cloudfront:CreateInvalidation",

 "Resource": "arn:aws:cloudfront::601403623821:distribution/E204AHJ2Q4OTIR"

 }

]

}

5.3 TESTING THE LAMBDA FUNCTION

I created a test event within Lambda to check functionality. To do this I used AWS’ example event

(https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-content-structure.html). I

changed the object key to “index.html” to ensure that test passed.

Invalidation is created.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-content-structure.html

25

5.4 TRIGGERING LAMBDA WITH S3 EVENT

You can create an S3 trigger within the Lambda function. Specific events within the bucket trigger the

lambda function.

26

5.5 UPDATING LAMBDA TRIGGER

Whilst the above trigger works, it isn’t cost effective. It triggers the lambda function for every file that is

uploaded. In this situation that’s 25 files and so the lambda function runs 25 times (and would increase if

there were more files). The only time I want the lambda function to run when the index.html file is

uploaded and so I updated the trigger configuration to only trigger lambda when a PUT event occurs and it

has a suffix of .html This should significantly reduce the number of lambda function calls.

27

You can see from the CloudWatch metrics, at 19:05, before the change to the trigger, the lambda function

was called 25 times but at 19:13 after the change, the lambda function was only called once.

5.6 FINAL TEST

As a final test I changed part of the index.html file, committed the changes and pushed them to the remote

GitHub repository to test if the entire process functioned as expected.

The invalidation is created immediately.

28

The website is instantly updated due to the invalidation.

6. CONCLUSION

Security should always be a major consideration with any architecture. S3 buckets that don’t need to be

public never should be as there are always websites trawling for public buckets (see

https://buckets.grayhatwarfare.com/) and so using methods to secure these are critical. This can include

Origin Access Identity but also using interface or gateway endpoints to prevent services needing to cross

the public internet to access files within S3 buckets.

CI/CD is a key part of software development. Whilst this is a basic use case of AWS Codepipline, it can be

used along with other software deployment services such as AWS Codecommit (AWS’ distributed version

control service) and AWS Codedeploy which deploys committed code to AWS services such as EC2, on

premises servers, Lambda function, ECS etc.

Finally using event driven architecture such as Lambda can simplify workflows but automating tasks. In this

case it keeps the website perfectly up to date and removes the need to manually invalidate the CloudFront

distribution everytime a change is made.

https://buckets.grayhatwarfare.com/

